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Abstract. Salient feature tracking for endoscopic images has been in-
vestigated in the past for 3D reconstruction of endoscopic scenes as well
as tracking of tissue through a video sequence. Recent work in the field
has shown success in acquiring dense salient feature profiling of the scene.
However, there has been relatively little work in performing long-term
feature tracking for capturing tissue deformation. In addition, real-time
solutions for tracking tissue features result in sparse densities, rely on re-
strictive scene and camera assumptions, or are limited in feature distinc-
tiveness. In this paper, we develop a novel framework to enable long-term
tracking of image features. We implement two fast and robust feature al-
gorithms, STAR and BRIEF, for application to endoscopic images. We
show that we are able to acquire dense sets of salient features at real-time
speeds, and are able to track their positions for long periods of time.

1 Introduction

There are many instances in which image guidance for minimally invasive surgery
requires tissue tracking in endoscopic video sequences in a robust manner. Tis-
sue tracking provides an evaluation of tissue morphology and deformation in-vivo
over time, which can be important for tracking regions of interest such as vascu-
lature or lesions. When a medical image is registered to the stereoscopic cameras
for augmented reality, tissue tracking provides the knowledge of how the under-
lying tissues are moving such that the medical image can be moved accordingly.
This keeps anatomical features such as nerves and lesions in known locations
during surgical intervention, which can be critical in enabling the success of an
operation such as laparoscopic radical prostatectomy (LRP) [19]. In LRP, the
surgeon images an exposed prostate using transrectal ultrasound (TRUS) and
dissects it from the surrounding tissues prior to resection. Since contact is lost
between the prostate and the surrounding tissue after mobilization, it is impor-
tant to maintain an image registration to the mobilized prostate in order to
perform resection within adequate surgical margins (1.9 &+ 0.8 mm [19]).

While many tissue tracking methods have been employed that use fiducial
markers, most recent work uses image-based non-invasive techniques. Unlike nat-
ural scenes and urban environments, tissue images have poor color and textural
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distinctiveness, few edges and corners, are poorly illuminated, exhibit a great
deal of specular reflection, and exhibit non-rigid deformation due to regular
patient motion (e.g. heartbeat, breathing) as well as interactions with surgical
instruments. Therefore, simple template-based tracking has been found to be
limited in performance[I215]. Others have used deformation functions [13] to
capture real-time deformations of a beating heart, but require predictive mod-
els for heartbeat motion, frequent reinitializations to avoid drift, and are only
able to capture low-order deformations. The most successful method for densely
tracking tissue deformation so far is feature tracking. Work by [GIOTTIIRI2T]
and references therein have shown that it is possible to find stable and uniquely
identifiable features in tissue images. However, two areas of difficulty still exists:

Feature Management for Long-Term Tracking. A framework for manag-
ing features that enter and exit an endoscopic scene is necessary to maintain
long-term stable tracking. Despite the successes of Simultaneous Localization
and Mapping methods for long-term tracking, they are suitable for natural
scenes and urban environments and predominantly rely on camera pose es-
timation, assuming that scene features generally only move due to camera
motion [2002T]. Due to patient movement (breathing, heartbeat) and surgi-
cal instrument interactions with tissues, these methods are limited in their
application here. Therefore, a long-term feature tracking method, one that
minimizes drift without estimating camera pose, and can track features tem-
porarily lost between frames, is an important contribution.

Speed. Features with high saliency, such as the Scale Invariant Feature Trans-
form (SIFT) [5], have been effective at producing dense, stable features
[BIT0/20021], but are unable to run at real-time speeds. Computationally fast
features (e.g. Shi-Tomasi [16], FAST [I4]) have only been able to generate
sparse sets of trackable points in real-time operation[8]. GPU implementa-
tions have been limited and have yet to achieve real-time speeds at high-
definition, and still rely on some CPU computation where GPU-acceleration
is deemed not effective [I7]. Therefore, an interesting research question is:
are we able to perform high-density feature tracking at real-time speeds?

In this paper, we will describe a novel long-term tissue tracking strategy that
is capable of capturing a dense map of tissue deformations within endoscopic
images. Using two relatively new salient feature algorithms (CenSuRE[1] and
BRIEF[2]), we are able to achieve real-time (greater than 10Hz) speeds while
maintaining high resolution tracking of tissue deformation for extended periods
of time. Furthermore, we show that this can be applied to stereoscopic scenes
for describing and tracking 3D tissue surface profiles.

2 Methods

2.1 Salient Features

We propose the use of two relatively new feature detectors: a modified version of
the Center Surrounded Extremas (CenSuRE) feature detector [I] called STAR
[22], and the Binary Robust Independent Elementary Features (BRIEF) [2].
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Mikolojaczyk and Schmid [7] found that the most salient image features found
in computer vision literature were derived from the Laplacian of Gaussian (LoG).
Where SIFT uses a Difference of Gaussians to estimate the LoG, CenSuRE uses
a bi-level center-surrounded square kernel, where pixel values within the kernel
are multiplied by either +1 or -1 (Figure [[k). These kernels are applied over
pyramidal scale space at all locations to find local extrema that represent salient
features. The extrema are then filtered using a scale-adapted Harris measure
to eliminate weak responses, and line suppression is performed by evaluating a
second moment matrix, and discarding those features that have a large ratio
between principle curvatures. The STAR feature detector [22] that we will be
using is a modification of the CenSuRE detector by using a star shaped kernel
(an overlay of a 0 deg and a 45 deg oriented CenSuRE kernel), in order to better
estimate the LoG (Figure [Ib). Given that these center-surround kernels are
simply addition and subtraction summations, they can be computed extremely
efficiently using integral images. The output of the STAR detector will be the
salient locations and scales of patches in the image.
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Fig. 1. (a) bi-level center-surround kernel constructed using integral images, and, (b)
the STAR kernel, and (c) example of a BRIEF kernel

In order to track features from one frame to the next, we use the BRIEF
[2] descriptor to describe a characteristically-scaled patch centered about each
STAR location. For each STAR location, N pairs of points in an S x .S square
region are chosen at random, with the condition that the probability of choosing
a point is equal to an isotropic Gaussian distribution centered about the STAR
location (Figure [Ik). A descriptor vector of length N is built to describe the
patch, where the i" element is either 0 (if, for the i*" pair, the pixel intensity
of the first point is higher than that of the second point) or 1 (otherwise).
This creates a binary vector that can be used to uniquely identify each feature.
Feature matching is performed by calculating the Hamming distance between
two feature descriptors. Following the formulation provided in [2], we use a patch
size of S = 25 and vector length of NV = 256.

There are a number of reasons as to why we chose to combine both STAR
and BRIEF (STAR+BRIEF) to describe a single salient feature. Both methods
evaluate patch-locations for saliency, and by extracting BRIEF features at char-
acteristic scales of the STAR locations, STAR+BRIEF features can be made
scale-invariant. STAR’s approximation of the LoG can be well described by the
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isotropic Gaussian-distributed pixel comparison vector of a BRIEF feature. Fi-
nally, both methods are fast to compute. Performance comparisons of STAR and
BRIEF to popular feature detectors can be found in their original papers [1I2].

2.2 Long-Term Feature Tracking

A salient feature tracking framework for long-term tracking is developed. As
opposed to other suggested frameworks for feature tracking for endoscopic video
[21120], our method does not use camera pose estimation and feature location
reprojection to estimate scene movement. Rather, we allow each feature to move
independently and use spatial and temporal filters to remove tracking errors,
and we allow features to be lost temporarily and found in subsequent frames.

Temporal Tissue Tracking. A visual flowchart of the proposed tissue tracking
framework is presented in Figure 2l We begin by capturing an image from the
surgical camera, and performing a pre-processing filter with a 3 x 3 Gaussian
smoothing kernel. We then extract the image features from the current frame
(Figure 2B) and match them to features found in previous frames (Figure 2IC).
A list of features is maintained, where previous features that are matched have
their locations and descriptors updated, and features that were not matched in
the current frame are added to the list. Finally, features that are matched below
a certain percentage of frames are discarded (empirically set to 40%).

Capture an @ Smooth the Image ® Detect and extract
Image (Gaussian ) features
Display j
Matches

Match new features to J

@ Update Features list
1. Update locations/descriptors
2. Append new features to list
3. Delete old keypoints

I List of Previous

Features

list of previous features

Fig. 2. Flowchart of the proposed feature tracking framework on a single image

There are a number of filters that are applied to improve feature matching
accuracy. A feature is defined as f(x,y, k), where z and y represent its pixel
location in the original image, and k represents its characteristic scale. Given
two feature lists (1 and 2), the i*" feature from list 1, f;, and the j** feature
from list 2, f;, we only perform descriptor comparisons on a subset of features.

— Physical Proximity: Since we do not expect large feature movement between
consecutive frames, our search space is limited by
|2 — x| < 6z and |y; — y;| < dy. (1)

where J, and d, is the range of the search space.
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— Scale Similarity: We do not expect significant changes in feature sizes be-
tween consecutive frames, and therefore limit our search space to

|log(ki/kj)| < &, (2)

where k is the maximum allowable ratio of feature scales.

— Descriptor Distance Ratio: We measure the confidence of feature matches by
comparing the descriptor distance of the best match, d;,4, to the descriptor
distance of the second best match, dsecond, and only take matches if

dfi?“st/dsecond < )‘7 (3)

where A is the maximum allowable ratio between the descriptor distances.

A set of matched features will provide a dense mapping of tissue movement
within the scene. Matches that move in significantly different directions than
the local tissue movement can be rejected. This is performed by checking the
movement of each matched feature against its nearest neighbors (matched fea-
tures within a Euclidean distance of 20% of the image width).

Given a set of two neighboring feature locations in frame n, Q1. = {Z1,n,Y1,n}

and Q2 = {Z2.n,Y2n}, and their matched locations in the previous frame,
Qin-1 = {T1n-1,Y1,n-1} and Q21 = {T2.-1,Y2,n—1}, We consider their
movements to be significantly different if
522 + Sy
lo ! ! > 4
‘ g <5x§ + dy3 " @

where {021,0y1} = {T1,n — T1,n-1,Y1,0 — Y101} and {0x2,0y2} = {22, —
Z2.n—1,Y2,n — Y2,n—1}, and where  represents the maximum allowable ratio of
squared distances of movements between the neighboring features. Furthermore,
the directions of their movements are considered to be significantly different if

Af = acos < 0x1 - 03 + 0y - Oyz ) > €, (5)

V622 + 6y2 /a2 + Sy?

where € is the maximum allowable difference in the direction of movement.
Matched features that move within € and « for more than 70% of neighboring
features are accepted. We check € and  only if there is a temporal displacement
of 5 pixels for each match, since the resolution of € and v decreases significantly
within a Euclidean distance of 5 pixels, making these filters less effective.

Stereoscopic Tracking. Our proposed tracking algorithm can be extended to
track features in 3D coordinate space. Features from a left and right channel of
a stereo-endoscope are matched in order to triangulate the features’ locations in
3D. The matching between features in stereoscopic channels can be filtered using
the same methods as above (Equations [Il 2] and B]). Since stereo-triangulation
does not take into account temporal movement, neighborhood feature movement
(Equations @] and []) are unnecessary for stereoscopic matching.
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We use one channel for temporal tracking, and the tracked features are then
matched against features found in the other channel for 3D localization; we note
that in the future, tracking both channels can be used for outlier rejection.

3 Experimental Setup

Table [l describes the parameters of our tissue tracking framework. x = log(2.0)
is chosen to search within an octave scale of a feature, and x = log(y/2.0) reflects
smaller changes in scale between stereo channels; §’s are chosen assuming that
features move relatively small distances between frames and between stereoscopic
channels. A\ = 0.5 chooses feature matches that have under half the descriptor
distance of the next best match. v = 2log(1.5) and € = /18 were chosen to
restrict features bundles to smooth, consistent motion, characteristic of tissue.

Four measures were used to evaluate the efficacy of STAR+BRIEF and the
long-term feature tracking strategy: (a) the number of features found per frame,
(b) the percentage of these features that are matched to ones in previous frames,
(c) the persistence of features in subsequent frames (d) and the algorithm speed.

We investigated the tracking algorithm’s ability on four endoscopic videos
involving different in-vivo tissue movement:

Translation: Abdominal cavity after inflation. Surgeon moves the endoscopic
camera to approximate translation. (1050 frames, 480 x 640 pixels).

Rotation: Abdominal cavity after inflation. Surgeon moves the endoscopic
camera to approximate rotation. (710 frames, 480 x 640 pixels).

Series: Abdominal cavity after inflation. Surgeon moves the endoscopic camera
to approximate a series of movements involving translation and scaling with
slight rotations. (1200 frames, 480 x 650 pixels)

Heartbeat: Open-chest procedure with an exposed heart. Significant surgical

clamps footprint in the image. A stationary camera images a heartbeat. (650
frames, 720 x 576 pixels).

These videos, acquired by Imperial College London, are available at http://ham
lyn.doc.ic.ac.uk/vision/

Table 1. Parameters for temporal and stereoscopic matching

Parameter Symbol Value (Temporal) Value(Stereo)

log(2.0) log(~/(2))
0.5ximage width on x-axis
0.05ximage height in y-axis
0.5 0.5
2 * log(1.5) N/A
m/18 N/A

Scale Threshold

Local Area Threshold 0.2ximage width

Descriptor Distance Ratio
Difference in movements
Difference in angles

a2 > o X
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4 Results

Figure[Bh,b shows two example (Series and Heartbeat videos) of STAR+BRIEF
features that are tracked temporally over time. The number of features extracted
by the STAR+BRIEF framework fully describe the deformation of the scene. The
average number of features tracked are shown in Figure Bk. Figure Bd shows that
the STAR+BRIEF framework is able to match 90% of its features from frame
to frame for general cases, and over 50% can be matched stereoscopically for 3D
localization. Matches were visually inspected and nearly all matches were found
to correctly track a correct physical location. We found that fewer features were
tracked in the heartbeat video; we believe this can be attributed to the greater
degree of specular reflection and significant occlusion from blood, and also the
systolic action of the heart, which exhibits frequencies higher than 100Hz that
cannot be adequately captured in the endoscopic cameras with conventional
framerates. Furthermore, slight discrepancies in triggering during steroscopic
frame-grabbing can account for significant movement between stereo channels.

Figure Bk shows a histogram of the percentage of subsequent frames in which
features are matched. The histograms are cumulative, where the first column
(40% to 50% persistence) is the total number of features being continuously
tracked by long-term tracking framework. Features below 40% persistence were
not stable and therefore were discarded. The number of features continuously
tracked over increasing percentage of frames is fairly linear for general motion.
Heartbeat motion shows less features being tracked continuously, and a non-
linear dropoff in persistence of features due to the lower stability of the features
from dynamic motion, specular reflection and blood occlusion.

Figure Bf shows the speed of our tracking framework with the STAR+BRIEF
method. We show that the our long-term tracking framework is able to process
sequences above 10Hz and is capable of performing stereoscopic matching and
3D deformation tracking at a fraction of the total tracking time. The heartbeat
video, due to the higher resolution and increased specular reflection and occlu-
sion, identified many more features than other videos that were unstable and
therefore required significantly higher computation effort than other videos.

Figure @l shows a sample of the tracking of a feature in the Series video, which
involves translation, scaling, and some rotation. A useful method for getting a
sense of the aversion to drift, given that we do not have a ground-truth source, is
forward-backward tracking [3] shown in Figure[dh, where we track a feature both
forwards and backwards in time. Since our long-term feature tracking framework
is history-dependent and therefore behaves differently moving in forwards and
backwards time, it can be seen that the feature location does not drift. Fig-
ure [@b shows the feature location at different timesteps, indicating its stability
throughout the sequence of motions.
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Fig. 3. (a,b) Sample feature set identified in the Series and Heartbeat sequences respec-
tively. (¢) Number of Features found per frame; (d) % of features in the current frame
that are matched to previous features (blue) and % of features matched stereoscopically
(orange); (e)The number of features that are found in % of subsequent frames. The
graph is cumulative such that the number of features drops off as the % of matching
in subsequent frames increases. (f) Time required for a complete cycle of the feature
tracking framework (blue) and the amount of time required for stereoscopic matching
(orange).
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Fig. 4. A STAR+BRIEF feature being tracked over time (1200 frames). Top: tracking
performed in both a forward and a backward time direction. Graph shows X and Y
coordinates as a function of time. Bottom: a 50 x 50 pixel window centered about the
feature location at every 100 frames.

5 Discussion

We have presented a novel framework for long-term tracking of endoscopic tissue
scenes. This framework uses salient features for populating the endoscopic images
in order to track the deformation of tissue at high densities. We have shown that
by using two new, efficient feature algorithms, CenSuRE/STAR and BRIEF, we
are able to achieve both high density tracking on standard definition video for
long-periods of time at real-time (greater than 10 Hz) speeds. Other fast feature
detectors, as well as GPU-accelerated feature tracking could also be used to
achieve fast and dense feature tracking under this framework.

The performance of the algorithm is not reliant on a rigid scene or camera
pose estimation and therefore can handle scene deformations, as tissue features
are being tracked individually and therefore can describe complex deformations.
However, in the case of significant high-frequency deformations (e.g. beating
heart), the feature-based approach must widen its search space between frames
in expectation of large dynamic movements of individual features. A reduction
of the effects of specular reflection and blood occlusion are required to improve
tracking, and several strategies can be used such as intensity thresholding and
interpolation [4]. In the case of the beating heart, other strategies besides feature
tracking, such as the ones presented in [13] can be more effective. Further efforts
to handle specular reflection effects and to track instrument occlusion will help
enable the long-term tracking strategy to track tissue through an entire surgery.

Given the long-term tissue feature tracking strategy we defined, it may be
possible to maintain a registered medical image to endoscopic cameras by track-
ing the underlying tissue movements; this will provide the surgeon the ability
to localize sub-surface tissue features such as nerves and lesions for better sur-
gical guidance. Furthermore, the ability to acquire 3D tracking of dense feature
maps may enable a surface-to-feature based registration method, such that the
ability to register and maintain a medical image to tissues in the endoscopic
cameras can be effectively streamlined. Future work will be to investigate the
efficacy of registering and maintaining a medical image to the tissues seen in
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the laparoscopic cameras, with the motivation of improving surgical guidance in
LRP, where the dissection of the prostate from the surrounding neurovascular
bundle must be performed within narrow margins (1.9 £+ 0.8 mm [19]).
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